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1 Introduction

The bridge experiment [1, 2] is a classical configuration used to explain the trail laying/following mech-
anism; it also gave much of the inspiration to research on Ant Colony Optimization algorithms [3, 4].
In the course, we studied the bridge experiment with two branches of the same length. In this project,
the more general case of two branches of different length is considered. We present both a microscopic
model and a macroscopic model taking into account collision avoidance. We study the effect of the dif-
ferent parameters of the microscopic model (e.g. pheromone evaporation rate, initial number of ants,
ratio of the path lengths) and try to find the optimal evaporation rate as a function of this ratio.

2 Microscopic and Macroscopic Model

2.1 Experiment Description and Assumptions

The experiment involves n homogeneous agents (ants, robots) in an initial position called Nest (N).
Their goal is to maximize the food quantity brought back to the nest. The food source (F) can be reached
by taking either a short path S of length l or a longer path L of length r ·l, r ≥ 1. Either path is also
possible on the way back to the nest independently from the path used to arrive at the food source. This
is illustrated in Figure 1.
We further make the following assumptions:

F (Food source)

N (Nest)

S L

FIG. 1: Experiment schema

• All robots have the same speed.

• The robots cannot get lost and must not have the possibility
to get stuck in some state; i.e., the probability that any robot
not in the nest eventually returns to the nest is 1.

• When they are on the long or short path, the robots perform
collision avoidance with other robots.

• In general, the wall avoidance and U-turn phenomena are
neglected in this experiment.

• The total probability of leaving the nest is small and initially
equal for both paths.

2.2 Microscopic Model

The microscopic model is a probabilistic final state machine (PFSM)
as shown in figure Figure 2.

Apart from the nest N and the food source F, the PFSM can be divided into the states belonging to the
short path on the left, and those belonging to the long path on the right. S1 and L1 model the paths
from the nest to the source, and S2 and L2 the paths from the source back to the nest. The state AX is
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FIG. 2: The probabilistic FSM describing the microscopic model

the avoidance state corresponding to state X; the state X̂ is the exit state of state X and is used to model
pheromones. See more on this below.
In general, pXY stands for the probability per time step to make a transition from state X to state Y,
and pX is the probability per time step of leaving state X in direction of either the source or the nest,
depending on the state.
Some of the transition probabilities are fixed; others are dynamical and written as a function of the
timestep k. Their equations and the modeling decisions which were made for some aspects are detailed
below.

2.2.1 Path Length

There is a ratio r between the short and the long path. The length of the path is taken into account in
the probability to go from S1 to Ŝ1, S2 to Ŝ2, L1 to L̂1 and L2 to L̂2. These probabilities pS and pL are
defined as the inverse of the time spent by a robot if it were to do through the whole path without being
interrupted:

pS =
1

l/v
=

v
l

pL =
1

r·l/v
=

v
r·l (1)

where v is the mean speed of the robots.
This reasoning for modeling the path length also holds if the collision avoidance probabilities pSA and
pLA change. Consider for instance that pSA were to reach a value of n·pS. A robot is then expected to
exit the current state S1 to AS1 n times as often as to Ŝ1. A full traversal of the short path is then expected
to contain on average n collision avoidance maneuvers, and thus n + 1 visits of the state S1. The mean
time T′

S1
spent in S1 (computed as the inverse of the sum of all outgoing probabilities) should then be

n + 1 times shorter than if there were no collision avoidance at all (TS1 ). It indeed is:

T′
S1

=
1

v
l + n· v

l
=

1/ v
l

n + 1
=

TS1

n + 1
(2)

2.2.2 Collision Avoidance

Collision/obstacle avoidance is only possible in state S1, L1, S2 and L2; it is neglected in all other states.
The probability pSA of doing obstacle avoidance is the same for S1 and S2 (as they model the same
physical path) and depends on the number of robots in these states. The same applies to L1 and L2. We
introduce a new model parameter, pr, which is defined as the probability of meeting one robot on the
short path. Then:

pSA(k) = max
{

1 − pS, pr ·(S1(k) + S2(k)− 1)
}

(3)

pLA(k) = max
{

1 − pS,
pr

r
·(L1(k) + L2(k)− 1)

}
(4)
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Obviously, an upper bound has to be defined for these probabilities in order for them not to be greater
than 1 (or 1− pS here). This case, however, would make sense, and corresponds to the physical situation
where there are so many robots on the path that it is impossible to squeeze them more in order to have
a new one enter the path. But in order to have a smooth, continuously derivable function for these
probabilities in our simulation, we actually replaced Equations 3 and 4 by:

pSA(k) = (1 − pS)
(

1 − e−λ·pr ·(S1(k)+S2(k)−1)
)

(5)

pLA(k) = (1 − pS)
(

1 − e−λ· pr
r ·(L1(k)+L2(k)−1)

)
(6)

The factor λ is then optimized so that Equations 5 and 6 best match Equations 3 and 4, respectively. We
used λ = 1.5. Also note that in Equations 4 and 6, we divide pr by r in order to model the fact that a
collision is r times less likely on a r times longer path.
The average time spent in collision avoidance, TA, is a new model parameter. The avoidance state have
been implemented probabilistically, the probability to leave any avoidance state being 1/TA.

2.2.3 Pheromone Trail Laying/Following

Pheromone laying is simulated by states Ŝ1, L̂1, Ŝ2 and L̂2 where the robots only spend one time step
when they leave the short and the long path, respectively, in direction of the nest or the food source.
This allows one to conveniently express the pheromone concentration by a sum (weighted by powers
of the evaporation rate) of the number of agents in these states during the last jmax steps. Note that
pheromones deposited while going to the food source are “smelled” when coming back from the source,
and vice-versa.

ΦNS(k) =
jmax

∑
j=0

hj · Ŝ2(k − j) ΦFS(k) =
jmax

∑
j=0

hj · Ŝ1(k − j) (7)

ΦNL(k) =
jmax

∑
j=0

hj · L̂2(k − j) ΦFL(k) =
jmax

∑
j=0

hj · L̂1(k − j) (8)

The new model parameter h is the evaporation rate of the pheromone. The probabilities pNS(k), pNL(k),
pFS(k), pFL(k) can then be modeled this way (not unlike the microscopic modeling proposed in [2]):

pNS(k) =
[q + ΦNS(k)]n

[q + ΦNS(k)]n + [q + ΦNL(k)]n
pFS(k) =

[q + ΦFS(k)]n

[q + ΦFS(k)]n + [q + ΦFL(k)]n
(9)

pNL(k) =
[q + ΦNL(k)]n

[q + ΦNS(k)]n + [q + ΦNL(k)]n
pFL(k) =

[q + ΦFL(k)]n

[q + ΦFS(k)]n + [q + ΦFL(k)]n
(10)

There are two new parameters: n is the degree of non-linearity and q is the degree of attraction of an
unmarked branch. A higher k means more exploration, a higher n means more exploitation—they are
used jointly to tune the ants’ behavior towards pheromone concentration.

2.3 Macroscopic Model

Let us first review all model parameters:

r : Ration L/S N0 : Initial number of ants
h : Evaporation rate pN : Total probability to leave the nest
q : Unmarked branch attraction pr : Probability to meet one robot on short branch
n : Non-linearity degree TA : Average avoidance time

The macroscopic model uses the same probabilities and the same states as the microscopic model pre-
sented in the previous section. The evolution of the model can be expressed by the following difference
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equations (only states corresponding to the nest, the food source and the short path are described; equa-
tions for the long path can be derived similarly using Equations 12 to 17 and the symmetric properties
of the paths). The initial conditions are specified as X(0) = 0 for all states X 6= N and N(0) = N0.

N(k + 1) = N(k) + Ŝ2(k) + L̂2(k)− pNS ·N(k)− pNL ·N(k) (11)
S1(k + 1) = S1(k) + pNS ·N(k) + pA ·AS1(k)− pS ·S1(k)− pSA ·S1(k) (12)

Ŝ1(k + 1) = pS ·S1(k) (13)
S2(k + 1) = S2(k) + pFS ·F(k) + pA ·AS2(k)− pS ·S2(k)− pSA ·S2(k) (14)

Ŝ2(k + 1) = pS ·S2(k) (15)
AS1(k + 1) = AS1(k) + pSA ·S1(k)− pA ·AS1(k) (16)
AS2(k + 1) = AS2(k) + pSA ·S2(k)− pA ·AS2(k) (17)

F(k + 1) = Ŝ2(k) + L̂2(k) (18)

3 Results

We now present some interesting results obtained by simulating the experiment in the final state ma-
chine representing the microscopic model described in the previous section. Figure 3 shows the ant
proportion on the branches without pheromones with r = 3 and r = 5. They oscillate around 75%/25%
and 80%/20%, respectively; this is what we expect if ants randomly choose either path. Figure 4 in-
cludes pheromone laying and shows how convergence differ depending on the initial number of ants
in the nest. More ants mean naturally more influence of the better path because more pheromone is
deposited. Finally, Figure 5 shows an experiment where the unmarked branch attraction q was set to 0
(down from 4) at iteration 7000. We see that the system eventually converges to a 100% exploitation of
the short branch.
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FIG. 3: Stabilization without pheromones (h = 0; r = 3 [left], r = 5 [right])
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FIG. 4: Convergence with pheromones (r = 2; h = 0.98; N0 = 100 [left], N0 = 200 [right])
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FIG. 5: Dynamic change of q at it. 7000
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FIG. 6: Optimal h as a function of r

Optimal evaporation rate Beside n and q, the evaporation rate of the pheromone h is one of the key
parameters of the experiment. If too high, the ants might get stuck in one branch and unable to go into
the other one (too much exploitation). If too small, the ants are not able to mark enough strongly the cho-
sen branch and continue to explore the other one even if it gives worse results (too much exploration).
Thus, finding the optimal evaporation rate for a given context is a crucial issue. Figure 6 shows the op-
timal evaporation rate experimentally as a function of the ratio r between the two branches. This result
was obtained by simulating the evolution of the macroscopic model for kmax = 10000 timesteps; the
evaporation rates were ranked according to the following fitness function, which counts ants returning
back to the nest:

fitness(params) =
1

N0

1
kmax

kmax

∑
k=1

[
Ŝ2(k) + L̂2(k)

]
(19)

4 Conclusion & Outlook

Including the collision avoidance mechanism in the asymmetric bridge experiments yields interesting
results. The optimal pheromone evaporation should be always slower to reach a good fitness as the
ratio r between the two branches increases, including the overcrowding effect. This holds of course if
all assumptions are correct.
Further work on this problem would probably have to include more systematic testing and realistic
simulation in order to try to reach a zero-free parameter model. Some of the parameters could be real-
istically approximated by making more assumptions on the size and geometry of the robots and paths,
for instance. Additional problem aspects could also be taken into account, like wall avoidance, U-turn
probability, noisy perception. A genetic algorithm could also be designed to optimize all free parameters
to find what the optimal ant species’ properties for this problem could be.
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